MCB5472
Computer methods in
molecular evolution
Lecture 3/22/2014
slides 1-46 and slide 104/105

Discussion

- What is the effect of throwing out sites that are not reliably aligned?
- What can one do to avoid phylogenetic reconstruction artifacts due to progressive alignment of non-homologous sites?
(consider guide trees and gaps)

What's in a tree?
Trees form molecalur data are usully calculated as unrooted trees (at least they
Should be-if they are not this sis susully a mistoke). To root at aree you either can assume a

 For example to root a phylogny of birds, you could use the homologous the the
characters from a reptile as ou ouroup: to find the root in a tree depicting the

 myoglobin sequence as outgroup, to root the tree of life, you could use ancient paraloss. such as in the ATP synthase
Irees have a branching patern (also called the topology), and branch lengths. Often the branch lengths are ignored in depiciting trees (these trees often are
referreed to a c cladogorams - note that cladograms should be considered rooted)

$\stackrel{\text {-(Leaves, OTUs), (Branches, splits, bipartitions), Nodes }}{ }$-In a rooted tree: clades (for unrooted trees sometimes the term clann is used) -Mono-, Parar-, polyphyletic groups, cladists and a natural taxonomy The term cladogram refers to a strictly bifurcating diagram, where each clade is defi a common ancestor that only gives rise to members of this clade. Le., a clade is monophyletic (derived from one ancestor) as opposed to poly ancestors). (Note: you do need to know where the root is!) A clade is recognized and defined by shared derived characters $($ = synapomorphies). Shared primitive characters = symplesisie Shared primitive characters (= sympleisiomorphies, alternative spelling is symplesiomorphies) do not define a clade, but a paraphyletic group. Characters that evolved twice independently are known as Homoplas polyphyletic groups (see in class example drawing ala Hennig). To use these any terms ((aside from homoplasy) you need to have polarized character most molecular characters you don't know which state is primitive and which is deri (exceptions:...).

Phylogenetic reconstruction - How

cance analayses
calculate pairwise distances
(different distance measures, correction for multiple hits, correction for codon bias)
make distance matrix (table of pairwise corrected distances)
calculate tree from distance matrix
i) using optimality criterion
(e.g.) smallest error between distance matrix
and distances in tree, or use
ii) algorithmic approaches (UPGMA or neighbor joining) See wikipedia entry on Neighbor ioining for a good illustration example of UPGMA

Else:
speciral analy yses, like evolutionary parsimony, look only at patterns
of subssitutions,
Another way to categorizz methods of phylogenetic reconstruction
is to ask if they are using
an optimality criterion (e.g.s.s smallest error between distance matrix
and
or distances in tree, least number of steps, highest probability),
algorithmic approaches (UPGMA or neighbor joining)
Packages and programs availale: PHYLIP, phyml, MrBaves,
Tree.Puzzle, PAUP, Clusalw, raxml, Phylocienie, HyPhy

Likelihood estimates do not take prior information into consideration.
e.g., if the result of three coin tosses is 3 times head, then the
likelibood likelihood estimate for the frequency of having a head is 1 (3 out of 3 events) and the estimate for the frequency of havins out of 3 event.
a tail is zero.
$P(A, B)=P(A, B) \quad$ The probability that both events (A and B) occur
$P(A \mid B) * P(B)=P(B \mid A) * P(A) \quad$ Both sides expressed as conditional probability
$P(A \mid B)=\frac{P(B \mid A)^{*} P(A)}{P(B)}$
If A is the model and B is the data, then
$P(B \mid A)$ is the likelinood of model A

$P(A)$ is the considered the prior probability of
$P(B)$ often is treated as a nomamaizing constant.

Why could a gene tree be different from the species tree?

- Lack of resolution
- Lineage sorting
- Gene duplications/gene loss (paralogs/ orthologs)
- Gene transfer
- Systematic artifacts (e.g., compositional bias and long branch attraction)
long branch attraction artifact

What could you do to investigate if this is a possible explanation? use only slow positions,
use an algorithm that co
se an algorithm that corrects for ASR

lack of resolution

Note:

We likely will not cover the following slides on Phylip, phyml, etc.
Note the assignment for next week on the last slide.

Can one reconstruct microbial phylogeny?

PHYLOGENY:
from Greek phylon, race or class, and -geneia, born.
"the origin and envelt
species" (Wikipedia);
Phylogeny does not necessarily occur in a tree-like process!
Rope as a metaphor to describe an organismal lineage (Graham Cairns-Smith, Gary Olsen)
ndividual fibers $=$ genes that travel for some time in a lineage.

While no individual fiber present at the beginning might be present at the end, the rope (or the organis
lineage) nevertheless has contity lineage) nevertheless has continuity

However, the genome as a whole will acquire the character of the incoming genes (the rope turns solidy red over time)

The Chimeric Genome of Sphaerochaeta: Nonspiral Spirochetes That

Gene transfer and recombination in haloarchaea

Phylip $\begin{gathered}\text { written and distributed by Joe Felsenstein and } \\ \text { collaborators some of the following is copied }\end{gathered}$ from the PHYLIP homepage)
PHYLIP (the PHYLogeny Inference Package) is a package of programs for inferring phylogenies (evolutionary trees).
PHYLIP is the most widely-distributed phylogeny package, and competes with PAUP* to be the one responsible for the largest number of published trees. PHYLIP has been in distribution since 1980, and has over 15,000 registered users.
Output is written onto special files with names like "outfile" and "outtree". Trees written onto "outrree" are in the Newick format, an informal standard agreed to in 1986 by authors of a number of major
phylogeny packages. phylogeny packages.
Input is either provided via a file called "infile" or in response to a
prompt.
prompt.

Programs in PHYLIP are Modular

 For example:SEQBOOT take one set of aligned sequences and writes out a SEQBOOAne orestap samples.
file containing bootstrap
PROTDIST takes a aligned sequences (one or many sets) and PROTDIST takes a aligned sequences (one
calculates distance matices (one or many)
FITCH (or NEIGHBOR) calculate best fitting or neighbor joining trees from one or many distance matrices
CONSENSE takes many trees and returns a consensus tre
modules are available to draw trees as well, but often people use treeview or niplot

The Phylip Manual is an excellent source of information.
Brief one line descriptions of the programs are here
The easiest way to run PHYLIP programs is via a command line menu (similar to clustalw). The program is invoked through clicking on an icon, or by typing the program name at the command
$>$ seqboot
$>$ protpar
fitch
If there is no file called infile the program responds with
[gogartenecarrot gogarten] \$ seqboot
seqboot: can't find input file "infile
Please enter a new file name>

What's in PHYLIP

Programs in PHYLIP allow to do parsimony, distance matrix, and likelihood methods, including bootstrapping and consensus trees. Dat types that can be handed incluade molecular sequences, gene frequencie,

Phylip works well with protein and nucleotide sequences
Many other programs mimic the syle
(e.g. TREEPUZZLE, phyml, protml)
Many other packages use PHYIP programs in their inner (

PHYLIP runs under all operating systems
Web interfaces are available

phyml
 HYML-A simple, fast, and accurate algorithm to estimate

 large phylogenies by maximum likelihoodAn online interface is here;
there is a command line version lia is described here (not a
straight forward as in clustalw);
a phylip like interface is automatically invoked, if you type
,
hymi is installed on bbcxsrv1.
Do example on atp all.phy
Note data type, bootstrap option within program, models for ASRV (pinvar and gamma), by
calculated via neighbor joining.

TreePuzzle ne PUZZLE楊

TREE-PUZZLE is a very versatile maximum likelihoc prograz that is particularly useful to analyze protein
sequences. The program was sequences. The program was developed by Korbian
Strimmer and Arnd von Haseler (then at the Univ. of Munich) and is maintained by von Haseler, Heiko A. Schmidt, and Martin Vingron
(contacts see http:/www.tree-puzzle.de).

TREE-PUZZLE

E allows fast and accurate estimation of ASRV through estimating the

 (calculating m I trees or quartets of species and building the
multispecies tree from the cuartets.
EThe program provides confidence numbers (puzzle support values)
which tend to be smaller than bootstrap values $($ i.e. provide a more conservative estimate),
 trees, which is great if you want to compare dififerent tree topologies, or
different models using the maximum likelinood ratio test. - Branches which are not significantly supported are collap TREE-PUZZZE runs on "all" platiorms
user in a way similar to the PHYLIP programs

Maximum likelinood ratio test
If you want to compare two modeles of evilution (this includes the kelihood ratio test.
$L_{1}^{1,2}$ and L_{2} are the likelihoods of the two models, $d=2$ (log $L_{1},-l o g L_{2}$) eproximately follows a Chi sualy C is the difiterence istribution with n degrees of
many perameters are used to describib the subratitution prococsss and
he tree. In particular n n can be the difference in branches between
whe tree. In particular n can be the difiference in brancic.
in prinipiele, this test can only be applied if on modedi is a more refined
 lock, the degrees of freedom are the number of OTUS -2 as all Clock, the degrees of freedon are the number of oTUs -2 (as all
sequences end pu it te present at the same level, their branches sequences end $4 p$ in the
cannot be freely chosen)

To calculate the probability you can use the
CHISQUARE calculator for windows available from Paul Lewis.

TREE-PUZZLE allows (cont)

-TREEPUZZLE calculates distance matrices using the $m 1$ specifie model. These can be used in FITCH or Neighbor
PUZZLEBOOT automates this approach to do bo he official script to PUZZI EBOOT is here- you need to create command file (puzze.cmds), and puzzle needs to be envocable trough the command puzzle.
A slighty modifified working version of puzzelieboot mod mod.shis her
A sighty mooditied working yersion of puzzzeboot mo
$\frac{\text { instructions before you run this! }}{\text { E Maximum likelinood mapping is }}$
assess the phylogeneliti information ocontinene in in datasest.
EM mapping can be used to calculate the
branch.
@@@ Puzzle is cool, don"t leave home without it! @@@
ml mapping

